Mutations in the RNase H Primer Grip Domain of Murine Leukemia Virus Reverse Transcriptase Decrease Efficiency and Accuracy of Plus-Strand DNA Transfer

Abstract
The RNase H primer grip of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) contacts the DNA primer strand and positions the template strand near the RNase H active site, influencing RNase H cleavage efficiency and specificity. Sequence alignments show that 6 of the 11 residues that constitute the RNase H primer grip have functional equivalents in murine leukemia virus (MLV) RT. We previously showed that a Y586F substitution in the MLV RNase H primer grip resulted in a 17-fold increase in substitutions within 18 nucleotides of adenine-thymine tracts, which are associated with a bent DNA conformation. To further determine the effects of the MLV RNase H primer grip on replication fidelity and viral replication, we performed additional mutational analysis. Using either β-galactosidase ( lacZ ) or green fluorescent protein ( GFP ) reporter genes, we found that S557A, A558V, and Q559L substitutions resulted in statistically significant increases in viral mutation rates, ranging from 2.1- to 3.8-fold. DNA sequencing analysis of nonfluorescent GFP clones indicated that the mutations in RNase H primer grip significantly increased the frequency of deletions between the primer-binding site (PBS) and sequences downstream of the PBS. In addition, quantitative real-time PCR analysis of reverse transcription products revealed that the mutant RTs were substantially inefficient in plus-strand DNA transfer relative to the wild-type control. These results indicate that the MLV RNase H primer grip is an important determinant of in vivo fidelity of DNA synthesis and suggest that the mutant RT was unable to copy through the DNA-RNA junction of the minus-strand DNA and the tRNA because of its bent conformation resulting in error-prone plus-strand DNA transfer.

This publication has 45 references indexed in Scilit: