Abstract
The large-scale heat and moisture budgets over the Tibetan Plateau and surrounding area during a 40-day period from late May to early July 1979 are studied using the FGGE Level II-b data. During this period the general circulation over East Asia underwent a distinct seasonal change characterizing the onset of the summer monsoon circulation. The analyses of the horizontal distributions of the vertically integrated heat source and moisture sink reveal the major heat source regions and their different degrees of association with precipitation. The 40-day mean distributions show intense heat sources of 150–300 W m−2 with moisture sinks of nearly equal magnitude over the Assam–Bengal region and in a broad belt extending over the China Plain along the Mei-yü front. The heat source of ∼100–150 W m−21 over the eastern Tibetan Plateau is accompanied by a moisture sink with a magnitude about half as large. The heat sources over the western Plateau and the Takla Makan Desert are not accompanied by appreciab... Abstract The large-scale heat and moisture budgets over the Tibetan Plateau and surrounding area during a 40-day period from late May to early July 1979 are studied using the FGGE Level II-b data. During this period the general circulation over East Asia underwent a distinct seasonal change characterizing the onset of the summer monsoon circulation. The analyses of the horizontal distributions of the vertically integrated heat source and moisture sink reveal the major heat source regions and their different degrees of association with precipitation. The 40-day mean distributions show intense heat sources of 150–300 W m−2 with moisture sinks of nearly equal magnitude over the Assam–Bengal region and in a broad belt extending over the China Plain along the Mei-yü front. The heat source of ∼100–150 W m−21 over the eastern Tibetan Plateau is accompanied by a moisture sink with a magnitude about half as large. The heat sources over the western Plateau and the Takla Makan Desert are not accompanied by appreciab...