The use of antisense mRNA to inhibit the tonoplast H+ ATPase in carrot.

Abstract
Carrot root cells were transformed with the coding or 5' noncoding regions of the carrot vacuolar H+ ATPase A subunit cDNA cloned in the antisense orientation behind the cauliflower mosaic virus 35S promoter. Bafilomycin-sensitive ATPase, H(+)-pumping, and 14C-O-methyl-glucose uptake activities were specifically inhibited in the tonoplast fractions of mutant cell lines. Protein gel blotting confirmed that the expression of the A subunit was inhibited in the tonoplast fraction, but not in the Golgi fraction. Two-dimensional protein gel blots of total microsomes of wild-type and control transformant cell lines revealed two major immunoreactive polypeptides in the acidic pI range. In contrast, highly purified tonoplast membranes contained only the less acidic polypeptide. Because the less acidic polypeptide was preferentially diminished in the two antisense cell lines, we infer that the antisense constructs specifically blocked expression of a tonoplast-specific isoform of the V-ATPase A subunit in carrot. Regenerated plants containing the antisense constructs exhibited altered leaf morphologies and reduced cell expansion. The altered phenotype was correlated with the presence of the antisense construct.