Biomimetic self-assembly of helical electrical circuits using orthogonal capillary interactions

Abstract
This letter describes the biomimetic self-assembly of mm-sized polyhedra into helical aggregates. The system used two orthogonal, capillary interactions that acted in parallel. The design of the self-assembly process, and of the resulting structures, was modeled on the formation and structure of tobacco mosaic virus. The self-assembled, helical aggregates carried one, two, or four isolated, electrical circuits.