Abstract
Polyethylene has an orthorhombic lattice for which nine elastic constants exist; they are obtained in terms of the intra- and intermolecular forces. Constants involved in the 6-12 Lennard-Jones potential approximating the London dispersion type of van der Waals' forces are obtained by computing the crystal potential energy and comparing it with the cohesive energy. First and second nearest-neighbor interactions are considered to establish relationship between the elastic constants and the interaction constants. The latter are obtained in terms of the C—C bond, stretching, bending, and repulsive force constants and the L-J potential constants. A limited type of central force assumption is applied. Values of Young and shear moduli are obtained along the three axes. The value along the chain compares with the experimentally determined and calculated values for oriented polyethylene. Young's modulus along the lateral direction is of the order of Young's modulus of bulk polyethylene, showing that intermo-lecular forces are the ones that determine the Young modulus of bulk polyethylene.

This publication has 11 references indexed in Scilit: