Species‐dependent migration of fish hatching gland cells that commonly express astacin‐like proteases in common

Abstract
Two constituent proteases of the hatching enzyme of the medaka (Oryzias latipes), choriolysin H (HCE) and choriolysin L (LCE), belong to the astacin protease family. Astacin family proteases have a consensus amino acid sequence of HExxHxxGFxHExxRxDR motif in their active site region. In addition, HCE and LCE have a consensus sequence, SIMHYGR, in the downstream of the active site. Oligonucleotide primers were constructed that corresponded to the above-mentioned amino acid sequences and polymerase chain reactions were performed in zebrafish (Brachydanio rerio) and masu salmon (Oncorynchus masou) embryos. Using the amplified fragments as probes, two full-length cDNA were isolated from each cDNA library of the zebrafish and the masu salmon. The predicted amino acid sequences of the cDNA were similar to that of the medaka enzymes, more similar to HCE than to LCE, and it was conjectured that hatching enzymes of zebrafish and masu salmon also belonged to the astacin protease family. The final location of hatching gland cells in the three fish species: medaka, zebrafish and masu salmon, is different. The hatching gland cells of medaka are finally located in the epithelium of the pharyngeal cavity, those of zebrafish are in the epidermis of the yolk sac, and those of masu salmon are both in the epithelium of the pharyngeal cavity and the lateral epidermis of the head. However, in the present study, it was found that the hatching gland cells of zebrafish and masu salmon originated from the anterior end of the hypoblast, the Polster, as did those of medaka by in situ hybridization. It was clarified, therefore, that such difference in the final location of hatching gland cells among these species resulted from the difference in the migratory route of the hatching gland cells after the Polster region.