Phosphorylation of rat kidney proximal tubular brush border membranes

Abstract
A possible correlation between cyclic-AMP dependent protein phosphorylation and altered sodium dependent transport of inorganic phosphate was analyzed in isolated rat renal proximal tubular brush border membrane vesicles. In transiently opened vesicles (opened by an osmotic shock), the addition of γ-32P-ATP leads to32P-incorporation into several, membrane proteins. The simultaneous addition of cyclic-AMP leads to increased phosphorylation of several proteins (e.g. apparent molecular weights: 40 kD, 46 kD, 55 kD). The addition of ATP, GTP and ITP to the osmotic shock medium leads to an (non-specific) inhibition of the sodium gradient dependent phosphate uptake. No further inhibition of the sodium dependent phosphate transport was observed when membrane vesicles were phosphorylated by ATP in the presence of cyclic-AMP. These data show a lack of correlation between cyclic-AMP dependent protein phosphorylation and altered sodium gradient dependent phosphate transport. Thus, there is no experimental support for the involvement of cyclic-AMP dependent protein phosphorylation as one of the final events in the regulation of phosphate transport across the rat renal proximal tubular brush border membrane.