Defect structure and electronic donor levels in stannic oxide crystals

Abstract
By measuring the conductivity of stannic oxide crystals as a function of oxygen partial pressure at elevated temperatures, it is shown that the dominant native defect in SnO2 is a doubly ionizable oxygen vacancy. Both donor levels of this defect, the first 30 meV deep and the second 150 meV deep, are identified and a model is presented that explains previous results. The behavior in hydrogen is contrasted to that in oxygen, and preliminary results are presented indicating that hydrogen introduces a donor 50 meV deep.

This publication has 9 references indexed in Scilit: