Ensemble climate predictions using climate models and observational constraints

Abstract
Two different approaches are described for constraining climate predictions based on observations of past climate change. The first uses large ensembles of simulations from computationally efficient models and the second uses small ensembles from state-of-the-art coupled ocean–atmosphere general circulation models. Each approach is described and the advantages of each are discussed. When compared, the two approaches are shown to give consistent ranges for future temperature changes. The consistency of these results, when obtained using independent techniques, demonstrates that past observed climate changes provide robust constraints on probable future climate changes. Such probabilistic predictions are useful for communities seeking to adapt to future change as well as providing important information for devising strategies for mitigating climate change.