Normal human B cells display ordered light chain gene rearrangements and deletions.

Abstract
Human kappa-producing B cell lines and leukemias retain their excluded lambda light chain genes in the germ line configuration, whereas transformed lambda-producing B cells uniformly rearrange or delete their kappa genes (12). Whether the unexpected lambda gene recombinations within malignant lambda-producing B cells reflect a normal developmental process or are secondary to transformation and specific chromosomal translocations was uncertain. To resolve this issue, we purified circulating lambda-bearing B cells from a normal individual to 97% purity by using a series of negative selection steps and a final positive selection on a cell sorter. Over 95% of the collective kappa genes in these lambda B cells were no longer in their germ line form, with the majority (60%) deleted and the remainder present but in a rearranged state. The chromosomal loss of the germ line kappa genes included the joining (J kappa) segments as well as the constant (C kappa) region, yet the particular variable (V kappa) gene family studied was spared. In addition, the incidence of kappa gene deletions was higher in long-term than in freshly transformed lambda B cell lines. This implies that the deletion of aberrantly rearranged kappa genes may occur as a second event. Such a mechanism would serve to eliminate aberrant transcripts and light chain fragments that might interfere with the synthesis and assembly of effective immunoglobulin molecules. Thus, despite the nearly equal usage of kappa and lambda light chain genes in man, there appears to be a sequential order to their expression during normal B cell ontogeny in which kappa gene rearrangements precede those of lambda.