A Split Hopkinson Bar Technique to Evaluate the Performance of Accelerometers
- 1 June 1996
- journal article
- Published by ASME International in Journal of Applied Mechanics
- Vol. 63 (2), 353-356
- https://doi.org/10.1115/1.2788872
Abstract
We developed a split Hopkinson bar technique to evaluate the performance of accelerometers that measure large amplitude pulses. A nondispersive stress pulse propagates in an aluminum bar and interacts with a tungsten or steel disk at the end of the bar. We measure stress at the aluminum bar-disk interface with a quartz gage and measure acceleration at the free end of the disk with an accelerometer. The rise time of the incident stress pulse in the aluminum bar is long enough and the disk length is short enough that the response of the disk can be approximated closely as rigid-body motion; an experimentally verified analytical model supports this assumption. Since the cross-sectional area and mass of the disk are known, we calculate acceleration of the rigid disk from the stress measurement and Newton’s Second Law. Comparisons of accelerations calculated from the quartz gage data and measured acceleration data show excellent agreement for acceleration pulses with the peak amplitudes between 20,000 and 120,000 G (1 G = 9.81m/s2), rise times as short as 20 μs, and pulse durations between 40 and 70 μs.Keywords
This publication has 9 references indexed in Scilit:
- An empirical equation for penetration depth of ogive-nose projectiles into concrete targetsInternational Journal of Impact Engineering, 1994
- Calibration of a Hopkinson Bar with a Transfer StandardShock and Vibration, 1993
- Penetration into soil targetsInternational Journal of Impact Engineering, 1992
- Hopkinson techniques for dynamic recovery experimentsProceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 1991
- A description of NBS calibration services in mechanical vibration and shockPublished by National Institute of Standards and Technology (NIST) ,1987
- Penetration into dry porous rockInternational Journal of Solids and Structures, 1986
- Longitudinal Impact on a Hollow ConeJournal of Applied Mechanics, 1969
- One-Dimensional Wave Propagation through a Short DiscontinuityThe Journal of the Acoustical Society of America, 1969
- Elastic waves in truncated conesExperimental Mechanics, 1968