Step-Scanning Interferometer with Digital Signal Processing

Abstract
A novel step-scan FT-IR spectrometer incorporating a digital signal processor for demodulation of the detector signal is described. The potential advantages of this method of signal processing are discussed and illustrated. The instrument is based on a commercial cube-corner interferometer which has been modified by replacement of the drive motor with a stepper motor-micrometer and piezoelectric transducer combination. The interferometer retardation is feedback controlled by a 486–50 personal computer, which also controls the digital signal processor and collects spectral data. More than one phase modulation frequency can be imposed simultaneously, allowing for a multiplex advantage in photoacoustic depth profiling. Digital signal processing allows for simultaneous demodulation of multiple frequencies which would normally require several lock-in amplifiers. Data that illustrate the feasibility of these concepts are presented. The suitability of this instrument for double-modulation step-scan FT-IR measurements such as polymer stretching and electrochemically modulated step-scan FT-IR is also discussed.