Abstract
A thin sheet of cardiac tissue was modeled as a set of resistively coupled excitable cables with membrane dynamics described by the modified Beeler Reuter model. Transverse connections have a resistance Rn and are regularly distributed with a spacing delta on any given cable, to provide alternating input and output junctions. Flat wave longitudinal propagation corresponds to propagation along a single continuous cable since all units of the network are functionally isolated due to the absence of transverse current flow. Events on a given cable during flat transverse propagation include electrotonic spread of potential from input to output junctions, action potential initiation at input junctions, and collision at output junctions. The propagating two-dimensional transverse wavefront is an undulating transmembrane potential surface with highs at the input junctions and lows at the output junctions. The action potential upstroke is also modulated in a periodic manner with minimum and maximum Vmax at the input and output junctions respectively. Thus, the network is capable of a diversity of dynamic behavior spatially distributed in relation to the specific pattern of transverse connections chosen. Overall, the behavior of the network model is in good agreement with available structural and electrophysiological data on myocardium. In addition, this network topology allows to handle more easily parameters governing propagation and to avoid very large matrices which are costly in computational effort and overall computer time.