Electro-optical graphene plasmonic logic gates

Abstract
The versatile control of graphene’s plasmonic modes via an external gate-voltage inspires us to design efficient electro-optical graphene plasmonic logic gates at the midinfrared wavelengths. We show that these devices are superior to the conventional optical logic gates because the former possess cut-off states and interferometric effects. Moreover, the designed six basic logic gates (i.e., NOR/AND, NAND/OR, XNOR/XOR) achieved not only ultracompact size lengths of less than λ/28 with respect to the operating wavelength of 10 μm, but also a minimum extinction ratio as high as 15 dB. These graphene plasmonic logic gates are potential building blocks for future nanoscale midinfrared photonic integrated circuits.
All Related Versions
Funding Information
  • National Research Foundation-Prime Minister's office, Republic of Singapore (NRF) (NRF-CRP 8-2011-07)