Paired-Phonon Analysis for the Ground State and Low Excited States of Liquid Helium

Abstract
The paired-phonon analysis operates in the function space generated by product functions compounded from (i) a starting trial function ψ of the Bijl-Dingle-Jastrow-type (BDJ) (a product of two-particle correlation factors exp[12U(rij)]; (ii) paired-phonon factors ρkρk to all powers, (iii) multiple phonon factors ρkρ1 to all powers, with neglect of all matrix elements representing processes in which phonons coalesce, split, or scatter. Results in the present study include (i) a simpler and more general derivation of the fundamental relations; (ii) proof that the improved ground-state trial function ψ^ generated by the analysis is still in the BDJ function space [with U(r) replaced by U(r)+δU(r)]; (iii) a formula expressing δU(r) in terms of S(k), the starting liquid-structure function, and w(k), the residual interaction function; (iv) a convenient representation of the phonon factor ρk as a linear combination of phonon creation and annihilation operators; (v) explicit statement of the relation between the optimization condition w(k)0 and the variational extremum property of the expectation value of H in the BDJ-type function space; (vi) usable approximate procedures for evaluating the residual interaction function w(k) based on the hypernetted-chain (HNC) and Percus-Yevick (PY) relations; and (vii) numerical evaluation of w(k), the energy shift δE, and the improved liquid-structure function S^(k) using ψ's computed by Massey and Woo as starting functions. For He4 at the equilibrium density, (1N)δE0.7 °K; for the hypothetical boson-type He3 system at ρ=0.0164 Å3, (1N)δE0.3°K (HNC) or 0.5°K (PY). In the discussion, emphasis is placed on the practical possibility of accurate numerical evaluation of the interaction function ω(k) by the method of molecular dynamics applied to systems containing 102 - 103 particles.