In vitro lymphocyte proliferation response to therapeutic insulin components. Evidence for genetic control by the human major histocompatibility complex.

Abstract
Genes in the major histocompatibility complex of mice and guinea pigs control immunologic responsiveness to insulins from other animal species. In order to determine if similar genetic control exists in man, we have examined lymphocyte proliferation responses to components of therapeutic insulins by employing lymphocytes from diabetic patients that receive insulin. Distinct groups of individuals demonstrated positive lymphocyte proliferative responses to beef insulin, beef and pork insulin, beef proinsulin, pork proinsulin, and protamine. Lymphocytes from the patient population were typed for the HLA-A, B, C, and DR antigens. An increased frequency of certain HLA antigens was found in those individuals that responded to the following therapeutic insulin components: beef, HLA-DR4; beef and pork, HLA-DR3; beef proinsulin, HLA-BW4, CW2, CW5, DR2, and DR5; protamine, HLA-CW3, CW5, and DR7. The results demonstrate that the human immune system recognized the structural differences between human and beef and/or pork insulin. These differences are two amino acids in the A chain, alpha loop, of beef insulin and the single terminal amino acid, alanine, which is common to pork and beef insulins. Positive responses to both beef proinsulin and pork proinsulin demonstrated the capability of restricted recognition of more complex proteins represented by the C-peptide in these insulin preparations. Lymphocyte proliferative responses to protamine were also restricted, which suggests a genetic control to this antigen. The association of these responses with HLA alloantigens strongly suggests that genes within the human major histocompatibility complex control recognition and lymphocyte response to therapeutic insulin components.