Abstract
Cyclin B interacts with Cdc2 kinase to induce cell cycle events, particularly those of mitosis. The existence of cyclin B subtypes in several species has been known for some time, leading to speculation that key events of mitosis may be carried out by distinct functional classes of Cdc2/cyclin B. We report the discovery of cig2, a third B-type cyclin gene in Schizosaccharomyces pombe. Disruption of cig2 delays the onset of mitosis, to the degree that a cig2 null allele rescues mitotic catastrophe mutants, including those that are unable to carry out the inhibitory tyrosyl phosphorylation of Cdc2 kinase. Consistent with this, a cig2 null allele exhibits synthetic lethal interactions with cdc25ts and cdc2ts mutations. Mitotic phenotypes caused by disruption of cig2 are not reversed by increased production of Cdc13, the other fission yeast B-type cyclin that functions in mitosis. Likewise, a cdc13ts mutation is not rescued by increased gene dosage of cig2+. These data indicate that Cdc13 and Cig2 interact with Cdc2 to carry out different functions in mitosis. We suggest that some cyclin B subtypes found in other species, including humans, are also likely to have distinct, nonoverlapping functions in mitosis.