Light-Induced Lysis and Carotenogenesis inMyxococcus xanthus

Abstract
Myxococcus xanthus, grown vegetatively in the light, developed an orange carotenoid after the cells entered stationary phase of growth; pigment content increased with age. Cells grown in the dark did not develop carotenoid and could be photolysed by relatively low-intensity light only during stationary phase; rate of photolysis increased with age. Photolysis adhered to the reciprocity law, was temperature-independent and oxygen-dependent, and required the presence of nonspecific, monovalent cations; it was inhibited by one of several divalent cations. Logarithmic-phase cells were photosensitized by 100,000 x g pellet preparations of sonic-treated stationary-phase cells grown in the light and dark. A porphyrin with a Soret band at 408 m[mu] was isolated from photosensitive cells; logarithmic-phase cells contained about 1/16 the amount of porphyrin of stationary-phase cells. The purified material had spectral and chemical properties of prtoporphyrin-IX and photosensitized logarithmic-phase cells. Its spectrum was similar to the action spectrum for photolysis. We concluded that protoporphyrin-IX is the natural endogenous photosensitizer. Carotenogenesis was stimulated by light in the blue-violet region of the visible spectrum and was inhibited by diphenylamine, resulting in photosensitivity of the cells. Photoprotection by carotenoid was lost in the cold. A mutant which synthesized carotenoid in the light and dark was photosensitive only after growth in diphenylamine. The ecological significance of these phenomena is discussed.