Monte Carlo test of the Flory-Huggins theory for polymer mixtures

Abstract
A lattice model of symmetric polymer mixtures is studied by Monte Carlo methods. We model the polymers as self-avoiding walks of N steps, an energy ε being won if neighboring monomers are of the same kind. Our results strongly disagree with the Flory-Huggins mean-field theory, which is widely believed to be accurate for large N. Implications of this discrepancy for the understanding of real polymers are discussed.