Abundance of Larval Rainbow Smelt (Osmerus mordax) in Relation to the Maximum Turbidity Zone and Associated Macroplanktonic Fauna of the Middle St. Lawrence Estuary

Abstract
We tested the hypothesis that the distribution and retention of larval smelt (Osmerus mordax) in the middle estuary of the St. Lawrence River is related to the maintenance of other planktonic organisms in the maximum turbidity zone (MTZ). We documented the horizontal and vertical distribution of larval smelt, macrozooplankton, and suspended particulate matter over four tidal cycles at each of three stations located along the major axis of the turbid upstream portion of the middle estuary. During summer, the turbid, warm, and low salinity waters of the two upstream stations were characterized byNeomysis americana, Gammarus sp. (principallyG. tigrinus), larval smelt,Mysis stenolepsis, andCrangon septemspinosus. The more stratified and less turbid waters of the downstream station were characterized by a coastal marine macrozooplanktonic community and the almost total absence of smelt larvae. Within the MTZ, the distribution ofN. americana coincided with the zone of longest average advective replacement times (null zone). Smelt larvae were distributed further upstream within the MTZ thanN. americana. Overall, larger larvae were distributed further upstream than smaller larvae. The relationship between turbidity and larval density at a specific time was weak (due to resuspension of sediments but not larvae), but the mechanism responsible for producing higher residence times for both sediment and larvae on a longer term basis appears the same. The daily movement and skewed nature of the null zone (due to the general cyclonic circulation of the middle estuary) defines a geographic zone over which the larval smelt population oscillates and remains despite the mean downstream velocities over the water column.