To determine the influence of exercise on cerebral blood flow, we ran 14 swine at 3–6 mph and at 0–10% grades on a treadmill for 30 min at moderate and severe levels of exercise. Measuring heart rate, cardiac output, and aortic pressure via implanted probes, we injected 15-mum radiolabeled microspheres via the left atrium before and during exercise. We measured their distribution by gamma spectrometry, determining total cerebral blood flow, regional blood flow, and ratio of flow to gray and white matter. Heart rate, cardiac output, and aortic pressure rose progressively with increasing exercise. Total cerebral flow resembled that reported in humans, i.e., it did not change significantly with exercise. Regional flow distribution also failed to change significantly with exercise. The ratio of gray to white matter flow did not change except to the cerebellum where it rose significantly from resting values at both moderate and severe exercise. Gray matter received more flow than white matter during all three conditions of observation. Cerebral blood flow was remarkably constant during even severe exercise.