Surface Tension of the Restrictive Primitive Model for Ionic Liquids

Abstract
Hybrid molecular dynamics and Monte Carlo simulations are performed to study the liquid-vapor interface of the restricted primitive model (RPM) of ionic fluids. We report for the first time simulation results of the surface tension associated to this interface. The RPM accurately predicts experimental surface tensions of ionic salts and good agreement with theoretical predictions that include the idea of ion association is found. The simulation results indicate that the structure of an ionic liquid-vapor interface is rather rough. This is reflected in the interfacial thickness, larger than that observed in simple fluids and water.