Measurements of ultrasonic pulse arrival time and energy level variations produced by propagation through abdominal wall

Abstract
Ultrasonic pulse arrival time and energy level variations introduced by propagation through human abdominal wall specimens have been measured. A hemispheric transducer transmitted an ultrasonic pulse that was detected by a linear array transducer after propagation through an abdominal wall section. The array was translated in the elevation direction to collect data over a two‐dimensional aperture. Differences in arrival time and energy level between the measured waveforms and calculated references that account for geometric delay and spreading were found. Plots of waveforms compensated for geometric path, maps of time delay differences and energy level fluctuations, and statistics derived from these for water paths and tissue paths characterize the measurement system and describe the time delay differences and energy level fluctuations caused by 14 different human abdominal wall specimens. Repeated measurements using the same specimens show that individual tissue path measurements are reproducible, the results depend on specimen position, and frozen storage of a specimen for three months does not appear to alter the time delay differences and energy level fluctuations produced by the specimen. Comparison of measurements at room and body temperature indicates that appreciably higher time delay differences occur at body temperature while energy level fluctuations and time delay difference patterns are less affected. For the 14 different abdominal wall specimens, the rms time delay differences and energy level fluctuations have average values of 43.0 ns and 3.30 dB, respectively, and the associated correlation lengths of the time delay differences and energy level fluctuations are 7.90 and 2.28 mm, respectively. The spatial patterns of time delay difference and energy level fluctuation in the reception plane appear largely uncorrelated, although some background variations in energy level fluctuation are similar to features in time delay difference maps. The results provide important new information about the variety and range of ultrasonic wave front arrival and energy variations caused by transmission through abdominal wall.