Differential regulation of communication by retinoic acid in homologous and heterologous junctions between normal and transformed cells.
Open Access
- 15 April 1991
- journal article
- Published by Rockefeller University Press in The Journal of cell biology
- Vol. 113 (2), 371-379
- https://doi.org/10.1083/jcb.113.2.371
Abstract
The permeability of junctions between cells of the same type (homologous junctions) is greatly increased by retinoic acid (10(-9)-10(-8) M), a probable morphogen, and this responsiveness is shared by a variety of normal and transformed cell types (Mehta, P.P., J.S. Bertram, and W.R. Loewenstein. 1989. J. Cell Biol. 108:1053-1065). Here we report that the heterologous junctions between the normal and transformed cells respond in the opposite direction; their permeability is reduced by retinoic acid (greater than or equal to 10(-9) M) and its benzoic acid derivative tetrahydrotetramethylnaphthalenylpropenylbenzoic acid (greater than or equal to 10(-11) M). The opposite responses of the two classes of junction are shown to be concurrent; in cocultures of normal 10T1/2 cells and their methylcholanthrene-transformed counterparts, the permeability of the heterologous junctions, which is lower than that of the homologous junctions to start with, falls (within 20 h of retinoid application), at the same time that the permeability of the homologous junctions rises in both cell types. Such a counter-regulation requires a minimum of three degrees of cellular differentiation. A model is proposed in which the differentiations reside in a trio of junctional channel protein. The principle of the model may have wide applications in the regulation of intercellular communication at tissue boundaries, including embryonic ones.Keywords
This publication has 40 references indexed in Scilit:
- Formation of gap junctions by expression of connexins in Xenopus oocyte pairsCell, 1989
- Gap junctional communication and developmentTrends in Neurosciences, 1989
- Growth factors modulate junctional cell-to-cell communicationThe Journal of Membrane Biology, 1988
- Neural differentiation, NCAM-mediated adhesion, and gap junctional communication in neuroectoderm. A study in vitro.The Journal of cell biology, 1988
- Identification of a second human retinoic acid receptorNature, 1988
- Growth inhibition of transformed cells correlates with their junctional communication with normal cellsCell, 1986
- Cell junction and cyclic AMP: II. Modulations of junctional membrane permeability, dependent on serum and cell densityThe Journal of Membrane Biology, 1981
- Selective contact-dependent cell communicationNature, 1976
- Communication between Cells of Different TypeNature, 1971
- On the genesis of cellular communicationDevelopmental Biology, 1967