4.3 mΩcm2, 1100 V 4H-SiC Implantation and Epitaxial MOSFET

Abstract
The channel mobility in the SiC MOSFET degrades on the rough surface of the p-well formed by ion implantation. Recently, we have developed a double-epitaxial MOSFET (DEMOSFET), in which the p-well comprises two stacked epitaxially grown p-type layers and an n-type region between the p-wells is formed by ion implantation. This device exhibited a low on-resistance of 8.5 mcm2 with a blocking voltage of 600 V. In this study, to further improve the performance, we newly developed a device structure named implantation and epitaxial MOSFET (IEMOSFET). In this device, the p-well is formed by selective high-concentration p+ implantation followed by low-concentration p- epitaxial growth. The fabricated IEMOSFET with a buried channel exhibited superior characteristics to the DEMOSFET. The extremely low specific on-resistance of 4.3 mcm2 was achieved with a blocking voltage of 1100 V. This value is the lowest in the normally-off SiC MOSFETs.