The application of energy‐filtering electron microscopy for the cytochemical localization of Ca2+ ‐ATPase activity in synaptic terminals

Abstract
The energy-filtering electron microscopical modes of electron energy-loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) have been applied to the cytochemical detection of Ca(2+)-ATPase activity in synaptic terminals in the brain of a cichlid fish. Using a recently developed modification of an enzyme-histochemical method, cerium phosphate was precipitated as a marker of high-affinity Ca(2+)-ATPase activity. This is considered to be a marker for the plasmalemma-bound calcium pump, an enzyme which plays a crucial role in the regulation of the cytoplasmic calcium concentrations and therefore of the reactivity of nerve cells. High-affinity Ca(2+)-ATPase activity is located preferentially at the inner side of synaptic plasma membranes and enables a discrimination of different types of synapse. It is only by using EELS and ESI that the very small amounts of high-affinity Ca(2+)-ATPase reaction product can be analysed reliably and located precisely. These new electron microscopical techniques offer powerful tools for cytochemical studies.