Stability of Flow Between Arbitrarily Spaced Concentric Cylindrical Surfaces Including the Effect of a Radial Temperature Gradient

Abstract
The stability of Couette flow and flow due to an azimuthal pressure gradient between arbitrarily spaced concentric cylindrical surfaces is investigated. The stability problems are solved by using the Galerkin method in conjunction with a simple set of polynomial expansion functions. Results are given for a wide range of spacings. For Couette flow, in the case that the cylinders rotate in the same direction, a simple formula for predicting the critical speed is derived. The effect of a radial temperature gradient on the stability of Couette flow is also considered. It is found that positive and negative temperature gradients are destabilizing and stabilizing, respectively.