Abstract
The present study describes the implementation of a new three-dimensional quantitative structure-activity relationship (3D-QSAR) technique: comparative molecular similarity indices analysis (CoMSIA) to a set of novel herbicidal sulfonylureas targeted acetolactate synthase. Field expressions in terms of similarity indices in CoMSIA were applied instead of the usually used Lennard-Jones and Coulomb-type potentials in CoMFA. Two different kinds of alignment techniques including field-fit alignment and atom-by-atom fits were used to produce the molecular aggregate. The results indicated that those two alignment rules generated comparative 3D-QSAR models with similar statistical significance. However, from the predictive ability of the test set, the models from the alignment after maximal steric and electrostatic optimization were slightly better than those from the simple atom-by-atom fits. Moreover, systematic variations of some parameters in CoMSIA were performed to search the best 3D-QSAR model. A significant cross-validated q2 was obtained, indicating the predictive potential of the model for the untested compounds; meanwhile the predicted biological activities of the five compounds in the test set were in good agreement with the experimental values. The CoMSIA coefficient contour plots identified several key features explaining the wide range of activities, which were very valuable for us in tracing the properties that really matter and getting insight into the potential mechanisms of the intermolecular interactions between inhibitor and receptor, especially with respect to the design of new compounds.