Functional aspects of plasticity in the visual system of adult cats after early monocular deprivation

Abstract
Responses to visual stimuli and to electrical stimulation of the optic chiasma were analysed in neurons of the lateral geniculate nucleus, visual cortex and superior colliculus in monocularly deprived cats with different post-deprivation periods. If the cats had both eyes open in their post-deprivation period (1 year) no recovery from the effects of early deprivation was found in the responses of neurones in all 3 visual structures. In cats with a post-deprivation reverse closure we found an increase in the proportion of Y-cells recorded in the early deprived layer of LGN when compared to the Y-cell proportion found in the same layers immediately after the deprived eye was opened. In neurons of the visual cortex and superior colliculus the functional abnormalities remained unaltered. The late closure of the non-deprived eye for up to 3 years did not effect neurons normally activated through that eye. Removal of the non-deprived eye unmasked connections of the deprived eye’s pathway onto neurons in the visual cortex and the superior colliculus. The neurons showed no specificity for the direction of movement or the orientation of visual stimuli. This recovery from deprivation was greater after enucleating the cats at the age of 6 months than at 18 months after birth. In the lateral geniculate nucleus of these cats the proportion of Y-cells in the recorded sample driven by the deprived eye had recovered to the value of normal cats. The difficulties in relating these physiological findings to results from morphological or behavioural studies are discussed.