Efficiency of Simulated Vehicle-to-Vehicle Message Propagation in Atlanta, Georgia, I-75 Corridor
Open Access
- 1 January 2005
- journal article
- research article
- Published by SAGE Publications in Transportation Research Record: Journal of the Transportation Research Board
- Vol. 1910 (1), 82-89
- https://doi.org/10.3141/1910-10
Abstract
Exploitation of in-vehicle information technology (e.g., mobile computing and wireless communications) in surface transportation systems is a clearly emerging trend. Equipping vehicles with computing, communication, and sensing capabilities presents significant opportunities for a vast array of transportation services. Vehicle-to-vehicle (V2V) communication may be considered for applications such as incident detection, crash reporting, traveler information dissemination, and network operations. In-vehicle computing systems facilitate the customization of information services to the needs and characteristics of individual travelers. In addition, these systems allow coverage to extend beyond areas where roadside equipment has been placed. This study provides the initial investigation needed to test the feasibility of these advanced communication networks. Several observations may be drawn from the study. First, V2V communication is a feasible way to propagate information along the I-75 freeway in the Atlanta, Georgia, area during peak or high-density traffic periods. With sufficient fleet penetration ratio and traffic density, information can quickly propagate through the system. Second, the simulation methodology described in this study allows researchers to estimate the required fleet penetration ratio for effective communication given the traffic density and application requirements. Third, delay in message propagation is highly variable until instrumented-vehicle density reaches a critical mass. For applications requiring highly reliable, minimal message propagation delay, it may be necessary to design networks that provide extra support to avoid such variation. Research is required to examine additional traffic conditions (e.g., congestion due to an incident) and study the effectiveness of this approach for particular applications.Keywords
This publication has 6 references indexed in Scilit:
- Vehicle-to-vehicle safety messaging in DSRCPublished by Association for Computing Machinery (ACM) ,2004
- Performance evaluation of safety applications over DSRC vehicular ad hoc networksPublished by Association for Computing Machinery (ACM) ,2004
- MDDVPublished by Association for Computing Machinery (ACM) ,2004
- Broadcast reception rates and effects of priority access in 802.11-based vehicular ad-hoc networksPublished by Association for Computing Machinery (ACM) ,2004
- A survey on position-based routing in mobile ad hoc networksIEEE Network, 2001
- Next generation real-time RTI softwarePublished by Institute of Electrical and Electronics Engineers (IEEE) ,2001