Abstract
Electrical pacing of the right heart is known to cause delays in the depolarization of left heart chambers, leading to abnormal left heart AV sequence. Interatrial conduction time, defined as the time from the right atrial pacing pulse or intrinsic P to the onset of left atrial P wave, and P wave sensing delay cause a shorter left heart AV interval during atrial pacing-ventricular sensing and atrial sense-ventricular pace. Interventricular conduction time (the time from the right ventricular pacing pulse to the onset of left ventricular depolarization), lengthens left heart AV interval during atrial sensing-ventricular pacing. These delays may add up or partly cancel out, depending on pacing mode. Thus, an algorithm for DDD pacemakers to optimize left heart AV interval by compensating for the above delays is proposed. This algorithm takes into account pacing and sensing delays to deliver a certain AV sequence to the right heart, aimed at producing a physiological left heart AV interval. The optimization of left heart AV interval is achieved by automatically changing right heart AV interval and pacing mode in accordance with known interatrial and interventricular conduction delays, and P wave sense offset.