5-hmC in the brain is abundant in synaptic genes and shows differences at the exon-intron boundary

Abstract
The 5-hydroxymethylcytosine (5-hmC) nucleoside is abundant in the brain for unknown reasons. Genome-wide analysis of the distribution of 5-hmC versus 5-methylcytosine (5-mC) in human and mouse tissues now shows that 5-hmC is enriched in genes with synaptic functions. The differential distribution of 5-hmC versus 5-mC at exon-intron boundaries in both human and mouse tissues further suggests a possible role for 5-hmC in pre-mRNA splicing. The 5-methylcytosine (5-mC) derivative 5-hydroxymethylcytosine (5-hmC) is abundant in the brain for unknown reasons. Here we characterize the genomic distribution of 5-hmC and 5-mC in human and mouse tissues. We assayed 5-hmC by using glucosylation coupled with restriction-enzyme digestion and microarray analysis. We detected 5-hmC enrichment in genes with synapse-related functions in both human and mouse brain. We also identified substantial tissue-specific differential distributions of these DNA modifications at the exon-intron boundary in human and mouse. This boundary change was mainly due to 5-hmC in the brain but due to 5-mC in non-neural contexts. This pattern was replicated in multiple independent data sets and with single-molecule sequencing. Moreover, in human frontal cortex, constitutive exons contained higher levels of 5-hmC relative to alternatively spliced exons. Our study suggests a new role for 5-hmC in RNA splicing and synaptic function in the brain.