The effect of extrinsic factors on two distinctive rhodopsin–porphyropsin systems

Abstract
The effects of light, temperature, and thyroxine on the proportions of two visual pigments (rhodopsin and porphyropsin) are compared for three species of fishes in which the pigment proportions change oppositely in response to light (rainbow and brook trout vs. common shiners). In rainbow trout and common shiners higher temperatures reduced the proportions of porphyropsin in the retina, independent of photic conditions. The greatest differences between the warm and cold treatment groups, however, were obtained with a photoperiod as contrasted with continuous light or darkness. Capping of one eye in brook trout reduced porphyropsin independently of the uncapped eye. Thyroxine, which favors porphyropsin in both species groups, acted effectively only in the presence of light. It is suggested that a photoperiod, which produces both bleaching and photomechanical movements within the retina, enhances the exchange of vitamin A1 and A2 aldehydes between the photoreceptor cells and the pigment epithelium. Apparently light influences these processes oppositely in the different groups of fishes. A model to explain how photic conditions affect visual pigment composition in tadpoles (Bridges 1975) is extended to account for the opposite responses to light and darkness observed in different fishes.

This publication has 4 references indexed in Scilit: