Abstract
The translocation of calcium from the extracellular fluid compartment into the mineralizing matrix during hard tissue formation is not well understood. There are two general means by which such calcium movement may occur: (1) diffusion through the pericellular space, or (2) transcellular transport. Cementum and bone are difficult tissues in which to study the system and little is known about the mechanisms involved. Dentin offers certain advantages for study and it appears that calcium movement into the mineralizing matrix is by trans‐cellular transport. Information concerning the transport mechanism is meager. Enamel is more easily explored. The apparent existence of intercellular junctions tight to calcium in the ameloblast layer at all stages of enamel formation indicates that calcium movement occurs by transcellular transport. Based on published findings, a hypothesis concerning mechanisms of transcellular transport may be advanced. It is proposed that the relatively low level of calcium transport through secretory ameloblasts occurs without direct involvement of a calcium binding protein. During the maturation stage, when calcium influx to the matrix is greatly increased, a calcium binding protein (9 kd) appears and facilitates transport while preventing unphysiologic increases in the cytosolic free calcium ion concentration. Differences in the calcium ion concentrations of extracellular fluid and enamel matrix fluid appear to be critical to the influx of calcium across the proximal cell membrane and the efflux of calcium across the distal cell membrane.