Abstract
▪ Abstract Turbulence is ubiquitous in atmospheric clouds, which have enormous turbulence Reynolds numbers owing to the large range of spatial scales present. Indeed, the ratio of energy-containing and dissipative length scales is on the order of 105 for a typical convective cloud, with a corresponding large-eddy Reynolds number on the order of 106 to 107. A characteristic trait of high-Reynolds-number turbulence is strong intermittency in energy dissipation, Lagrangian acceleration, and scalar gradients at small scales. Microscale properties of clouds are determined to a great extent by thermodynamic and fluid-mechanical interactions between droplets and the surrounding air, all of which take place at small spatial scales. Furthermore, these microscale properties of clouds affect the efficiency with which clouds produce rain as well as the nature of their interaction with atmospheric radiation and chemical species. It is expected, therefore, that fine-scale turbulence is of direct importance to the evolu...