Responses to Rare Visual Target and Distractor Stimuli Using Event-Related fMRI

Abstract
Previous studies have found that the P300 or P3 event-related potential (ERP) component is useful in the diagnosis and treatment of many disorders that influence CNS function. However, the anatomic locations of brain regions involved in this response are not precisely known. In the present event-related functional magnetic resonance imaging (fMRI) study, methods of stimulus presentation, data acquisition, and data analysis were optimized for the detection of brain activity in response to stimuli presented in the three-stimulus oddball task. This paradigm involves the interleaved, pseudorandom presentation of single block-letter target and distractor stimuli that previously were found to generate the P3b and P3a ERP subcomponents, respectively, and frequent standard stimuli. Target stimuli evoked fMRI signal increases in multiple brain regions including the thalamus, the bilateral cerebellum, and the occipital-temporal cortex as well as bilateral superior, medial, inferior frontal, inferior parietal, superior temporal, precentral, postcentral, cingulate, insular, left middle temporal, and right middle frontal gyri. Distractor stimuli evoked an fMRI signal change bilaterally in inferior anterior cingulate, medial frontal, inferior frontal, and right superior frontal gyri, with additional activity in bilateral inferior parietal lobules, lateral cerebellar hemispheres and vermis, and left fusiform, middle occipital, and superior temporal gyri. Significant variation in the amplitude and polarity of distractor-evoked activity was observed across stimulus repetitions. No overlap was observed between target- and distractor-evoked activity. These event-related fMRI results shed light on the anatomy of responses to target and distractor stimuli that have proven useful in many ERP studies of healthy and clinically impaired populations.