Nucleon Properties in the Perturbative Chiral Quark Model

Abstract
We apply the perturbative chiral quark model (PCQM) to analyse low-energy nucleon properties: electromagnetic form factors, meson-nucleon sigma-terms and pion-nucleon scattering. Baryons are described as bound states of valence quarks surrounded by a cloud of Goldstone bosons (pi, K, eta) as required by chiral symmetry. The model is based on the following guide lines: chiral symmetry constraints, fulfilment of low-energy theorems and proper treatment of sea-quarks, that is meson cloud contributions. Analytic expressions for nucleon observables are obtained in terms of fundamental parameters of low-energy pion-nucleon physics (weak pion decay constant, axial nucleon coupling constant, strong pion-nucleon form factor) and of only one model parameter (radius of the nucleonic three-quark core). Our results are in good agreement with experimental data and results of other theoretical approaches.
All Related Versions