In situ localization of human fibronectin (FN) genes to chromosome regions 2p14→p16, 2q34→q36, and 11q12.1→q13.5 in germ line cells, but to chromosome 2 sites only in somatic cells

Abstract
The locations of the genes for fibronectin (FN) on chromosomes of human germ line and somatic cells were determined by in situ molecular hybridization with two 3H-labeled DNA probes, one for the region encoding the cell attachment domain of human FN, the other for the 3’ noncoding and part of the coding region. Pachytene chromosomes of two males and lymphocyte chromosomes of one of these males and a female were used. Two regions of hybridization on pachytene and somatic chromosome 2 (p14→p16 and q34→q36) were found, but not in all individuals. A third region of hybridization was found at 11q12.1→ql3.5 in meiotic, but not with significant frequency in somatic chromosomes. It is not clear if these differences between meiotic and somatic chromosomes, and the large differences between individuals at some of the other hybridization sites, resulted solely from technical factors. The differences between the findings in meiotic and somatic preparations might be due to the presence of four strands in pachytene chromosomes versus only one per somatic chromatid. Individual differences in DNA sequences in the chromosome segment containing the gene, differences in gene locations among individuals, or between meiotic and mitotic chromosomes might account for the other findings. The results confirm some of the earlier studies with cell hybrids that mapped FN genes to chromosomes 2 or 11. The combined findings suggest that some of these loci may be coding for the plasma form of FN and others for the cellular form. The expression of the different FN types by differentiated cells might then depend on the loci that are activated.