Covalent Group IV Atomic Clusters

Abstract
Atomic clusters containing from two to several hundred atoms offer the possibility of studying the transition from molecules to crystalline solids. The covalent group IV elements carbon, silicon, and germanium are now being examined with this long-range objective. These elements are particularly interesting because of the very different character of their crystalline solids and because they are intermediate between metals and insulators in the nature of their bonding. Small mass-selected atom cluster ions are formed by pulsed laser techniques and identified by time-of-flight methods. Laser photoexcitation is used to study the relative stability of these clusters and their modes of fragmentation. These modes for Cn+ clusters, which tend to fragment with a characteristic loss of a neutral C3, are found to be different from the modes for Sin+ and Gen+ clusters, which tend to fragment to "magic" clusters such as Si4+, Si6+ and Si10+. These experimental results can be accounted for by recent theoretical calculations of the ground-state structure and stability of small silicon and carbon clusters. Several theoretical approaches give consistent results, showing that small silicon clusters are compact and different from small fragments of the bulk crystal. Calculations show that carbon clusters change from linear structures toward cyclic structures as the cluster size increases, but with significant odd-even differences.