Abstract
A simulation algorithm is proposed to generate sample functions of a stationary, multivariate stochastic process according to its prescribed cross-spectral density matrix. If the components of the vector process correspond to different locations in space, then the process is nonhomogeneous in space. The ensemble cross-correlation matrix of the generated sample functions is identical to the corresponding target. The simulation algorithm generates ergodic sample functions in the sense that the temporal cross-correlation matrix of each and every generated sample function is identical to the corresponding target, when the length of the generated sample function is equal to one period (the generated sample functions are periodic). The proposed algorithm is based on an extension of the spectral representation method and is very efficient computationally since it takes advantage of the fast Fourier transform technique. The generated sample functions are Gaussian in the limit as the number of terms in the frequen...

This publication has 19 references indexed in Scilit: