Oligonucleotide Microarray for the Study of Functional Gene Diversity in the Nitrogen Cycle in the Environment
- 1 February 2003
- journal article
- research article
- Published by American Society for Microbiology in Applied and Environmental Microbiology
- Vol. 69 (2), 1159-71
- https://doi.org/10.1128/aem.69.2.1159-1171.2003
Abstract
The analysis of functional diversity and its dynamics in the environment is essential for understanding the microbial ecology and biogeochemistry of aquatic systems. Here we describe the development and optimization of a DNA microarray method for the detection and quantification of functional genes in the environment and report on their preliminary application to the study of the denitrification gene nirS in the Choptank River-Chesapeake Bay system. Intergenic and intragenic resolution constraints were determined by an oligonucleotide (70-mer) microarray approach. Complete signal separation was achieved when comparing unrelated genes within the nitrogen cycle ( amoA , nifH , nirK , and nirS ) and detecting different variants of the same gene, nirK , corresponding to organisms with two different physiological modes, ammonia oxidizers and denitrifying halobenzoate degraders. The limits of intragenic resolution were investigated with a microarray containing 64 nirS sequences comprising 14 cultured organisms and 50 clones obtained from the Choptank River in Maryland. The nirS oligonucleotides covered a range of sequence identities from approximately 40 to 100%. The threshold values for specificity were determined to be 87% sequence identity and a target-to-probe perfect match-to-mismatch binding free-energy ratio of 0.56. The lower detection limit was 10 pg of DNA (equivalent to approximately 10 7 copies) per target per microarray. Hybridization patterns on the microarray differed between sediment samples from two stations in the Choptank River, implying important differences in the composition of the denitirifer community along an environmental gradient of salinity, inorganic nitrogen, and dissolved organic carbon. This work establishes a useful set of design constraints (independent of the target gene) for the implementation of functional gene microarrays for environmental applications.Keywords
This publication has 30 references indexed in Scilit:
- Nitrite reductase genes in halobenzoate degrading denitrifying bacteriaFEMS Microbiology Ecology, 2003
- Quantitative Detection of Microbial Genes by Using DNA MicroarraysApplied and Environmental Microbiology, 2002
- Development and Evaluation of Functional Gene Arrays for Detection of Selected Genes in the EnvironmentApplied and Environmental Microbiology, 2001
- Bacterial Species Determination from DNA-DNA Hybridization by Using Genome Fragments and DNA MicroarraysApplied and Environmental Microbiology, 2001
- Analysis of Variance for Gene Expression Microarray DataJournal of Computational Biology, 2000
- Isolation and Characterization of Diverse Halobenzoate-Degrading Denitrifying Bacteria from Soils and SedimentsApplied and Environmental Microbiology, 2000
- Population genetics—making sense out of sequenceNature Genetics, 1999
- A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization.Genome Research, 1996
- Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA MicroarrayScience, 1995
- DNA Probes: Applications of the Principles of Nucleic Acid HybridizationCritical Reviews in Biochemistry and Molecular Biology, 1991