Tree-Ring δD as an Indicator of Asian Monsoon Intensity

Abstract
Oxygen and hydrogen isotopic compositions of meteoric water are known to correlate with surface air temperature, except in tropical areas. This relationship has been described using a number of terms corresponding to specific observations, such as latitude, altitude and seasonal effects. However, these temperature effects do not seem to apply to precipitation in monsoonal areas of Asia. Questions have been raised as to whether the isotopic composition of meteoric water can be used to reconstruct paleomonsoon intensity. Tree rings of two modern spruce trees (Picea meyeri) and a 10,000-yr-old timber (Picea jezoensis) were analyzed for hydrogen isotopic composition. On average, the older tree is depleted in deuterium by 45‰ compared to the modern trees. We attribute this isotopic depletion to the strength of summer monsoons, which were more intense in the early Holocene than at present. Although this study is not definitive, it suggests that paleomonsoon intensity can be reconstructed by direct or proxy methods that yield the oxygen or hydrogen isotopic composition of meteoric water.