Improved Weather and Seasonal Climate Forecasts from Multimodel Superensemble

Abstract
A method for improving weather and climate forecast skill has been developed. It is called a superensemble, and it arose from a study of the statistical properties of a low-order spectral model. Multiple regression was used to determine coefficients from multimodel forecasts and observations. The coefficients were then used in the superensemble technique. The superensemble was shown to outperform all model forecasts for multiseasonal, medium-range weather and hurricane forecasts. In addition, the superensemble was shown to have higher skill than forecasts based solely on ensemble averaging.

This publication has 3 references indexed in Scilit: