The Iseult/Inumac Whole Body 11.7 T MRI Magnet R&D Program
- 17 February 2010
- journal article
- Published by Institute of Electrical and Electronics Engineers (IEEE) in IEEE Transactions on Applied Superconductivity
- Vol. 20 (3), 702-705
- https://doi.org/10.1109/tasc.2010.2040149
Abstract
A neuroscience research center with very high field MRI equipments has been opened in November 2006 by the CEA life science division. One of the imaging systems will require a 11.75 T magnet with a 900 mm warm bore. Regarding the large aperture and field strength, this magnet is a real challenge when compared to the largest MRI systems ever built, it is being developed within an ambitious R&D program, Iseult, focused on high field MRI. The conservative MRI magnet design principles are not readily applicable, other concepts taken from high energy physics or fusion experiments, namely the Tore Supra tokamak magnet system, will be used. The coil will thus be made of a niobium-titanium conductor cooled by a He II bath at 1.8 K, permanently connected to a cryoplant. Due to the high level of stored energy, about 340 MJ, and a relatively high nominal current, about 1500 A, the magnet will be operated in a non-persistent mode with a conveniently stabilized power supply. In order to take advantage of superfluid helium properties and regarding the high electromagnetic stresses on the conductors, the winding will be made of wetted double pancakes meeting the Stekly criterion for cryostability. The magnet will be actively shielded to fulfill the specifications regarding the stray field. In order to develop the magnet design on an experimental basis, an ambitious R&D program has been set-up based on magnet prototypes, high field test facility (Seht) and stability experiments. The main results from these experiments and their impact on the Iseult magnet design will be discussed.Keywords
This publication has 11 references indexed in Scilit:
- Cryogenics Around the 11.7 T MRI Iseult MagnetIEEE Transactions on Applied Superconductivity, 2010
- Quench Propagation Kinetics Within ‘Iseult/INUMAC’ Whole Body 11.7 T MRI Magnet Shielding CoilsIEEE Transactions on Applied Superconductivity, 2010
- Iseult/INUMAC Whole Body 11.7 T MRI Magnet StatusIEEE Transactions on Applied Superconductivity, 2010
- Tests of a Prototype for Assessing the Field Homogeneity of the Iseult/Inumac 11.7 T Whole Body MRI MagnetIEEE Transactions on Applied Superconductivity, 2010
- Mechanical Design of the Iseult 11.7 T Whole Body MRI MagnetIEEE Transactions on Applied Superconductivity, 2010
- A Prototype for Assessing the Field Homogeneity of the Iseult MRI MagnetIEEE Transactions on Applied Superconductivity, 2009
- Field Stabilization of an MRI Magnet Operating in Driven ModeIEEE Transactions on Applied Superconductivity, 2009
- DC insulation tests of W7-X coils at CEA, SaclayFusion Engineering and Design, 2009
- The Iseult/Inumac Whole Body 11.7 T MRI Magnet DesignIEEE Transactions on Applied Superconductivity, 2008
- Design and Testing of Electrical Insulation for Superconducting CoilsAdvances in Cryogenic Engineering, 1988