Endothelium-independent contractions of human cerebral arteries in response to vasopressin.

Abstract
We studied the effects of vasopressin in isolated segments from branches (500-700 micrograms in external diameter) of human middle cerebral arteries obtained during autopsy of 15 patients who had died 3-8 hours before. Paired segments, one normal and the other de-endothelized by gentle rubbing, were mounted for isometric recording of tension in organ baths. In 11 normal segments, vasopressin produced concentration-dependent contractions with an EC50 of 7.0 X 10(-10) M. Removal of the endothelium from 12 segments did not significantly affect vasopressin-induced contractions. Vasopressin produced further contractions in arterial segments with (n = 4) or without (n = 5) endothelium precontracted with KCl. In segments precontracted with prostaglandin F2 alpha, acetylcholine choline caused relaxation only of those with endothelium. At 10(-8) M (n = 11), the vasopressin V-1 receptor antagonist d(CH2)5Tyr(Me)AVP produced a 60-fold shift to the right of the control response curve for vasopressin. Increasing the concentration of the receptor antagonist to 10(-6) M (n = 7) further displaced the control curve in a parallel manner. These results indicate that vasopressin exerts a powerful constrictor action on isolated human cerebral arteries by direct stimulation of V-1 receptors located predominantly on smooth muscle cells. It appears that this contractile response is not modulated by the presence of an intact endothelial cell layer.

This publication has 19 references indexed in Scilit: