Granulocytes and Phorbol Myristate Acetate Increase Permeability to Albumin of Cultured Endothelial Monolayers and Isolated Perfused Lungs

Abstract
Human granulocytes and phorbol myristate acetate (PMA) increased permeability to albumin of monolayers of cultured endothelial cells grown on micropore filters. Granulocytes from a patient with chronic granulomatous disease and PMA did not increase endothelial permeability to albumin, demonstrating that the increase in permeability is dependent on granulocyte-derived oxygen radicals. When granulocytes were separated from the endothelial cells by a micropore filter, granulocytes and PMA no longer increased endothelial permeability to albumin, demonstrating that PMA-stimulated granulocytes must be closely approximated to endothelial cells to increase endothelial permeability. The relevance of these in vitro findings to an intact microvasculature was confirmed by demonstrating that agents that reduce granulocyte adherence to endothelium reduce edema formed in isolated lungs by granulocytes and PMA, an oxygen radical dependent process. Pretreatment of granulocytes with cytochalasin B or addition of 2% dextran to isolated lung perfusates reduced granulocyte adherence and markedly reduced edema formation in isolated lungs. These studies demonstrate that PMA-stimulated granulocytes must be closely apposed to endothelial cells to increase endothelial permeability through an oxygen-radical-dependent mechanism, and they suggest that reduction of granulocyte adherence may protect against granulocyte-dependent edema.