Volatile Fatty Acids and Hydrogen as Substrates for Sulfate-Reducing Bacteria in Anaerobic Marine Sediment
- 1 July 1981
- journal article
- research article
- Published by American Society for Microbiology in Applied and Environmental Microbiology
- Vol. 42 (1), 5-11
- https://doi.org/10.1128/aem.42.1.5-11.1981
Abstract
The addition of 20 mM MoO42− (molybdate) to a reduced marine sediment completely inhibited the SO42− reduction activity by about 50 nmol g−1 h−1 (wet sediment). Acetate accumulated at a constant rate of about 25 nmol g−1 h−1 immediately after MoO42− addition and gave a measure of the preceding utilization rate of acetate by the SO42−-reducing bacteria. Similarly, propionate and butyrate (including isobutyrate) accumulated at constant rates of 3 to 7 and 2 to 4 nmol g−1 h−1, respectively. The rate of H2 accumulation was variable, and a range of 0 to 16 nmol g−1 h−1 was recorded. An immediate increase of the methanogenic activity by 2 to 3 nmol g−1 h−1 was apparently due to a release of the competition for H2 by the absence of SO42− reduction. If propionate and butyrate were completely oxidized by the SO42−-reducing bacteria, the stoichiometry of the reactions would indicate that H2, acetate, propionate, and butyrate account for 5 to 10, 40 to 50, 10 to 20, and 10 to 20%, respectively, of the electron donors for the SO42−-reducing bacteria. If the oxidations were incomplete, however, the contributions by propionate and butyrate would only be 5 to 10% each, and the acetate could account for as much as two-thirds of the SO42− reduction. The presence of MoO42− seemed not to affect the fermentative and methanogenic activities; an MoO42− inhibition technique seems promising in the search for the natural substrates of SO42− reduction in sediments.Keywords
This publication has 8 references indexed in Scilit:
- Hydrogen as a substrate for methanogenesis and sulphate reduction in anaerobic saltmarsh sedimentArchiv für Mikrobiologie, 1978
- Inhibition of methanogenesis by sulphate reducing bacteria competing for transferred hydrogenArchiv für Mikrobiologie, 1978
- Growth of Desulfovibrio in Lactate or Ethanol Media Low in Sulfate in Association with H 2 -Utilizing Methanogenic BacteriaApplied and Environmental Microbiology, 1977
- Energy conservation in chemotrophic anaerobic bacteria.1977
- A new anaerobic, sporing, acetate-oxidizing, sulfate-reducing bacterium, Desulfotomaculum (emend.) acetoxidansArchiv für Mikrobiologie, 1977
- Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. III. Experiments with 14C-labeled substratesAntonie van Leeuwenhoek, 1974
- Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. II. Inhibition experimentsAntonie van Leeuwenhoek, 1974
- Formate as an Intermediate in the Bovine Rumen FermentationJournal of Bacteriology, 1970