Abstract
This paper presents an automated truck platoon that has been developed within a national ITS project named "Energy ITS," and the results and future issues. The five-year project started in 2008 aimed at energy saving and global warming prevention with automated driving. A platoon of three fully-automated heavy trucks and also a fully-automated light truck drove at 80 km/h with the gap of up to 4.7 m on a test truck. The lateral control was based on the lane marker detection by computer vision, and the longitudinal control was based on gap measurement by 76 GHz radar and lidar in addition to the inter-vehicle communications of 5.8 GHz DSRC and infrared. The radar and lidar also worked as the obstacle detection. The feature of the technologies is high reliability. Fuel consumption measurement on a test track shows that the fuel can be saved by about 15 % when the gap was 4.7 m. A simulation study shows that the effectiveness of the platooning with the gap of 10 m when the 40 % penetration in heavy trucks is 2.1 % reduction of CO2 along an expressway. In addition, experiments of four heavy trucks with CACC were also conducted for the introduction scenario. The technological and non-technological issues on automated driving and its introduction are also discussed.

This publication has 2 references indexed in Scilit: