Functional cell surface expression by a recombinant single‐chain class I major histocompatibility complex molecule with a cis‐active β2‐microglobulin domain

Abstract
As a preliminary step towards the use of cell surface single-chain class I major histocompatibility complex (MHC) molecules as T cell immunogens, we have engineered a recombinant gene encoding a full-length cell surface single-chain version of the H-2Dd class I MHC molecule (SCβDdm) which has β2-microglobulin (β2m) covalently linked to the amino terminus of a full-length H-2Dd heavy chain via a peptide spacer. The single-chain protein is correctly folded and stably expressed on the surface of transfected L cells. It can present an antigenic peptide to an H-2Dd-restricted antigen-specific T cell hybridoma. When expressed in peptide-transport-deficient cells, SCβDdm can be stabilized and pulsed for antigen presentation by incubation with extracellular peptide at 27° or 37 °C, allowing the preparation of cells with single-chain molecules that are loaded with a single chosen antigenic peptide. SCβDdm can be stably expressed in β2m-negative cells, showing that the single-chain molecule uses its own β2m domain to achieve correct folding and surface expression. Furthermore, the β2m domain of SCβDdm, unlike transfected free β2m, does not rescue surface expression of endogenous class I MHC in the β2m-negative cells. This strict cis activity of the β2m domain of SCβDdm makes possible the investigation of class I MHC function in cells, and potentially in animals, that express but a single type of class I MHC molecule.