MgATP activates the β cell K ATP channel by interaction with its SUR1 subunit
- 9 June 1998
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 95 (12), 7185-7190
- https://doi.org/10.1073/pnas.95.12.7185
Abstract
ATP-sensitive potassium (KATP) channels in the pancreatic β cell membrane mediate insulin release in response to elevation of plasma glucose levels. They are open at rest but close in response to glucose metabolism, producing a depolarization that stimulates Ca2+ influx and exocytosis. Metabolic regulation of KATP channel activity currently is believed to be mediated by changes in the intracellular concentrations of ATP and MgADP, which inhibit and activate the channel, respectively. The β cell KATP channel is a complex of four Kir6.2 pore-forming subunits and four SUR1 regulatory subunits: Kir6.2 mediates channel inhibition by ATP, whereas the potentiatory action of MgADP involves the nucleotide-binding domains (NBDs) of SUR1. We show here that MgATP (like MgADP) is able to stimulate KATP channel activity, but that this effect normally is masked by the potent inhibitory effect of the nucleotide. Mg2+ caused an apparent reduction in the inhibitory action of ATP on wild-type KATP channels, and MgATP actually activated KATP channels containing a mutation in the Kir6.2 subunit that impairs nucleotide inhibition (R50G). Both of these effects were abolished when mutations were made in the NBDs of SUR1 that are predicted to abolish MgATP binding and/or hydrolysis (D853N, D1505N, K719A, or K1384M). These results suggest that, like MgADP, MgATP stimulates KATP channel activity by interaction with the NBDs of SUR1. Further support for this idea is that the ATP sensitivity of a truncated form of Kir6.2, which shows functional expression in the absence of SUR1, is unaffected by Mg2+.Keywords
This publication has 34 references indexed in Scilit:
- Neurotensin Inhibition of the Hyperpolarization‐Activated Cation Current (Ih) in the Rat Substantia Nigra Pars Compacta Implicates the Protein Kinase C PathwayThe Journal of Physiology, 1997
- Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulphonylurea receptorNature, 1997
- Adenosine Diphosphate as an Intracellular Regulator of Insulin SecretionScience, 1996
- A Family of Sulfonylurea Receptors Determines the Pharmacological Properties of ATP-Sensitive K+ ChannelsNeuron, 1996
- Cloning and functional expression of the cDNA encoding a novel ATP‐sensitive potassium channel subunit expressed in pancreatic β‐cells, brain, heart and skeletal muscleFEBS Letters, 1995
- Reconstitution of I KATP : An Inward Rectifier Subunit Plus the Sulfonylurea ReceptorScience, 1995
- ABC Transporters: From Microorganisms to ManAnnual Review of Cell Biology, 1992
- The gating of nucleotide-sensitive K+ channels in insulin-secreting cells can be modulated by changes in the ratio ATP4−/ADP3− and by nonhydrolyzable derivatives of both ATP and ADPThe Journal of Membrane Biology, 1988
- The ATP‐sensitivity of K+ channels in rat pancreatic B‐cells is modulated by ADPFEBS Letters, 1986
- Intracellular ADP activates K+ channels that are inhibited by ATP in an insulin‐secreting cell lineFEBS Letters, 1986